Membaca kondensator milar dan keramik mirip dgn menghitung resistor.Angka dibelakang menunjukkan perkaliannya.


Contoh        :   104 ( 100 nf ) artinya 10 X 10.000 = 100.000 pico farad

103 ( 10 nf )   artinya 10 X 1000    = 10.000   pico farad

102 ( 1 nf  )    artinya 10 X 100      = 1000      pico farad

101 ( 100 pf ) artinya 10 X 10        = 100        pico farad

Dan seterusnya seperti itu.


Kondensator Milar



Lihat contoh kondensator milar diatas kodenya 2A104J,maksudnya bagaimana kode di belakang angka tsb?

Berikut ini penjelasannya :

2A maksudnya adalah simbol tegangan.Lalu berapa nilainya?

Lihat tabel diatas,cara membacanya di balik yaitu A2.

A = 1

2 = 00

Jadi tegangannya 100V.

Kemudian kode huruf J adalah toleransi yaitu 5%.

Jadi kapasitor 2A104J = 100 nf ( nano farad ),toleransi 5% dan tegangan maksimal 100V.


Contoh lagi :

Ada kapasitor milar kodenya : 2H224K

Cara membaca : 2H dibaca H2

H = 5

2 = 00

224 = 220 nf

K = 10%

Jadi 2H224K = 220 nf,Toleransi 10%,Tegangan 500V

How to read Capacitor Codes

Grab an LCR or Capacitance meter, read the value of the capacitor you wish to replace. This is assuming the capacitor you are replacing is not damaged beyond the point of a reasonably accurate reading.

Larger capacitors, like electrolytic, have the value printed on them clearly, such as 10uF, but smaller types often have just 2 or three numbers on them.

2 Numbers: These are read as Pico-Farads. An example: 47 printed on a small disk can be assumed to be 47 Pico-Farads (or 47pF).

3 Numbers: The first two are the 1st and 2nd significant digits and the third is a multiplier code. Most of the time the last digit tells you how many zeros to write after the first two digits, but this is not ALWAYS the case. eg. an extra digit might be indicating an ESR value.

Capacitor Speak – milli, micro, nano, pico,

1 milli Farad (or any other unit) is 1/1,000th  or .001 times the unit. (10-3)

1 micro = 1/1,000,000 or 0.000 001 times the unit (10-6 )

1 nano = 1/1,000,000,000 or 0.000 000 001 times the unit (10-9 )

1 pico = 1/1,000,000,000,000 or 0.000 000 000 001 times the unit (10-12 )

Table 1 Digit multipliers
Third digit Multiplier (this times the first two digits
gives you the value in Pico-Farads)
0 1
1 10
2 100
3 1,000
4 10,000
5 100,000
6 not used  
7 not used  
8 .01
9 .1

Example: A capacitor marked 104 is 10 with 4 more zeros or 100,000pF which is otherwise referred to as a 0.1uF capacitor.

Tolerance code is given by a single letter. Example a 103J is a 10,000 pF with +/-5% tolerance

Table 2 Letter tolerance code
Letter symbol Tolerance of capacitor
B +/- 0.10%
C +/- 0.25%
D +/- 0.5%
E +/- 0.5%
F +/- 1%
G +/- 2%
H +/- 3%
J +/- 5%
K +/- 10%
M +/- 20%
N +/- 0.05%
P +100% ,-0%
Z +80%, -20%

Exceptions: There is sometimes a letter-number-letter (like Z5U) code that gives additional information.
Example. A 224 Z5U would be a 220,000 pF (or .22 uF) cap with a low temperature rating of -10 deg C a high temperature rating of +85 Deg C and a tolerance of +22%,-56%.

Table 3 Dielectric codes
First symbol
(a letter)
Low temperature requirement Second symbol
(a number)
High Temperature requirement Third Symbol
(a letter)
MAX. Capacitance change over temperature
Z +10 deg. C 2 +45 deg. C A +1.0%
Y -30 deg. C 4 +65 deg. C B +/- 1.5%
X -55 deg. C 5 +85 deg. C C +/- 2.2%
    6 +105 deg. C D +/- 3.3%
    7 +125 deg. C E +/- 4.7%
        F +/- 7.5%
        P +/- 10.0%
        R +/- 15.0%
        S +/- 22.0%
        T +22%, -33%
        U +22%, -56%
        V +22%, -82%

There are some Capacitor colour codes – the last dot is the tolerance code where brown is +/-1% red +/-2% as in the resistor colour code with two exceptions black is +/- 20% and white is +/- 10% going backward the three dots to the left of the tolerance dot form the value in pF There will be two or three more colour dots before the value but they mean different things about temperature range and coefficient depend which one of three systems is used.

There are two more number systems seen on caps. The first one can be recognized as the EIA because it starts with an R.

R DM 15 F 471(R) J 5 O (C)

The above number means the following

R tells us this is an EIA code
DM is a dipped case style CM would be a molded case style
15 is the case size code – if anyone asks I will put up a table for this
F is the characteristic code from table 4
471R the R is a decimal point when used (not often) the
first two digits form the significant value and the third
is the multiplier thus, this is a 470pF part
J is the capacitance tolerance code as given in table 2 above thus J is a 5% part
5 is the DC working voltage in hundreds of volts (EIA only) thus 500V
O is the temperature range from table 5
C tells us the leads are crimped where a S would tell us they are straight.

This next one is a Military code example:

CM 15 B D 332 K N 3

CM is the case code – DM is a dipped case style CM would be a molded case style
15 is the case size code – if anyone asks I will put up a table for this
B characteristic code tells us it doesn’t have a drift specified (from table 4)
D is the Military voltage code from table 6
332 tells us that it is 3,300pF
K tells us from table 2 that this is a 10% part
N gives us our temperature range of -55 to 85 °C from table 5
3 The 3gives the vibration grade 3 tells us 20g at 10 to 2,000 hz for 12 hours (1 is 10G at 10 to 55 Hz for 4.5 hours)


Table 4 characteristic codes
EIA or MIL characteristic code Maximum capacitance drift Maximum range of Temp coefficient
B Not specified Not specified
C +/-(0.5% + 0.1pF) +/- 200 ppm/°C
D +/-(0.3% + 0.1pF) +/- 100 ppm/°C
E +/-(0.1% + 0.1pF) -20 to +100 ppm/°C
F +/-(0.05% + 0.1pF) 0 to +70 ppm/°C


Table 5 Temperature range
M -55 to 70 °C
N -55 to 85 °C
O -55 to 125 °C
P -55 to 150 °C


Table 6 Mil voltage range code in volts
A 100
B 250
C 300
D 500
E 600
F 1,000
G 1,200
H 1,500
J 2,000
K 2,500
L 3,000
M 4,000
N 5,000
P 6,000
Q 8,000
R 10,000
S 12,000
T 15,000
U 20,000
V 25,000
W 30,000
X 35,000

Cog or NPO refer to caps that don’t have any temperature drift (at least in theory.)



To use this table, just read across. For example, 1uF is same 1,000nF or 1,000,000pF.

eg. uF nF pF   eg. uF nF pF
105 1uF 1000nF 1000000pF   102 0.001uF 1nF 1000pF
  0.82uF 820nF 820000pF     0.00082uF 0.82nF 820pF
  0.8uF 800nF 800000pF     0.0008uF 0.8nF 800pF
  0.7uF 700nF 700000pF     0.0007uF 0.7nF 700pF
  0.68uF 680nF 680000pF     0.00068uF 0.68nF 680pF
  0.6uF 600nF 600000pF     0.0006uF 0.6nF 600pF
  0.56uF 560nF 560000pF     0.00056uF 0.56nF 560pF
  0.5uF 500nF 500000pF     0.0005uF 0.5nF 500pF
  0.47uF 470nF 470000pF     0.00047uF 0.47nF 470pF
  0.4uF 400nF 400000pF     0.0004uF 0.4nF 400pF
  0.39uF 390nF 390000pF     0.00039uF 0.39nF 390pF
  0.33uF 330nF 330000pF     0.00033uF 0.33nF 330pF
  0.3uF 300nF 300000pF     0.0003uF 0.3nF 300pF
  0.27uF 270nF 270000pF     0.00027uF 0.27nF 270pF
  0.25uF 250nF 250000pF     0.00025uF 0.25nF 250pF
  0.22uF 220nF 220000pF     0.00022uF 0.22nF 220pF
  0.2uF 200nF 200000pF     0.0002uF 0.2nF 200pF
  0.18uF 180nF 180000pF     0.00018uF 0.18nF 180pF
  0.15uF 150nF 150000pF     0.00015uF 0.15nF 150pF
  0.12uF 120nF 120000pF     0.00012uF 0.12nF 120pF
104 0.1uF 100nF 100000pF   101 0.0001uF 0.1nF 100pF
  0.082uF 82nF 82000pF     0.000082uF 0.082nF 82pF
  0.08uF 80nF 80000pF     0.00008uF 0.08nF 80pF
  0.07uF 70nF 70000pF     0.00007uF 0.07nF 70pF
  0.068uF 68nF 68000pF     0.000068uF 0.068nF 68pF
  0.06uF 60nF 60000pF     0.00006uF 0.06nF 60pF
  0.056uF 56nF 56000pF     0.000056uF 0.056nF 56pF
  0.05uF 50nF 50000pF     0.00005uF 0.05nF 50pF
  0.047uF 47nF 47000pF     0.000047uF 0.047nF 47pF
  0.04uF 40nF 40000pF     0.00004uF 0.04nF 40pF
  0.039uF 39nF 39000pF     0.000039uF 0.039nF 39pF
  0.033uF 33nF 33000pF     0.000033uF 0.033nF 33pF
  0.03uF 30nF 30000pF     0.00003uF 0.03nF 30pF
  0.027uF 27nF 27000pF     0.000027uF 0.027nF 27pF
  0.025uF 25nF 25000pF     0.000025uF 0.025nF 25pF
  0.022uF 22nF 22000pF     0.000022uF 0.022nF 22pF
  0.02uF 20nF 20000pF     0.00002uF 0.02nF 20pF
  0.018uF 18nF 18000pF     0.000018uF 0.018nF 18pF
  0.015uF 15nF 15000pF     0.000015uF 0.015nF 15pF
  0.012uF 12nF 12000pF     0.000012uF 0.012nF 12pF
103 0.01uF 10nF 10000pF   100 0.00001uF 0.01nF 10pF
  0.0082uF 8.2nF 8200pF     0.0000082uF 0.0082nF 8.2pF
  0.008uF 8nF 8000pF     0.000008uF 0.008nF 8pF
  0.007uF 7nF 7000pF     0.000007uF 0.007nF 7pF
  0.0068uF 6.8nF 6800pF     0.0000068uF 0.0068nF 6.8pF
  0.006uF 6nF 6000pF     0.000006uF 0.006nF 6pF
  0.0056uF 5.6nF 5600pF     0.0000056uF 0.0056nF 5.6pF
  0.005uF 5nF 5000pF     0.000005uF 0.005nF 5pF
  0.0047uF 4.7nF 4700pF     0.0000047uF 0.0047nF 4.7pF
  0.004uF 4nF 4000pF     0.000004uF 0.004nF 4pF
  0.0039uF 3.9nF 3900pF     0.0000039uF 0.0039nF 3.9pF
  0.0033uF 3.3nF 3300pF     0.0000033uF 0.0033nF 3.3pF
  0.003uF 3nF 3000pF     0.000003uF 0.003nF 3pF
  0.0027uF 2.7nF 2700pF     0.0000027uF 0.0027nF 2.7pF
  0.0025uF 2.5nF 2500pF     0.0000025uF 0.0025nF 2.5pF
  0.0022uF 2.2nF 2200pF     0.0000022uF 0.0022nF 2.2pF
  0.002uF 2nF 2000pF     0.000002uF 0.002nF 2pF
  0.0018uF 1.8nF 1800pF     0.0000018uF 0.0018nF 1.8pF
  0.0015uF 1.5nF 1500pF     0.0000015uF 0.0015nF 1.5pF
  0.0012uF 1.2nF 1200pF     0.0000012uF 0.0012nF 1.2pF
102 0.001uF 1nF 1000pF ………. 1R0 0.000001uF 0.001nF 1pF

Top of Form

Ceramic Capacitor Codes

How to read a Ceramic capacitor with Numeric coding.


Multiplier Table (Ceramic)

Number Multiply By (Additional # of Zeros)
0 None (0)
1 10 (1)
2 100 (2)
3 1,000 (3)
4 10,000 (4)
5 100,000 (5)
6 1,000,000 (6)

Common Temperature Coefficient Codes (Ceramic)

Code Tolerance
C ±0.25pF
J ±5%
K ±10%
M ±20%
D ±0.5pF
Z +80% / -20%

Common Temperature Coefficient Characteristics (Ceramic)

Temperature Coefficient Operating Temperature Range Capacitance Change Minimum Capacitor Tolerance
Y5E -30°C ~ +85°C ± 4.7% ±10%
Y5F -30°C ~ +85°C ±7.5% ±20%
Y5P -30°C ~ +85°C ± 10% ±10%
Y5U -30°C ~ +85°C +22% / -56% ±20%
Y5V -30°C ~ +85°C +22% / -82% ±20%
Z5U +10°C ~ +85°C + 22% / -56% ±20%
Z5V +10°C ~ +85°C + 22% / -82% +80% / -20%

Application Notes (Ceramic):

NPO: Has a very low dissipation factor and are very stable over wide variations in temperature, frequency, voltage, and time. NPO type capacitors are frequently used for precision timing, filtering, frequency setting, and tuning circuits.

X7R: Are used when some capacitance variation is allowed and the dissipation factor is not critical. X7R type capacitors are frequently used for bypass, decoupling, filtering, frequency discrimination, timing, DC voltage blocking, voltage transient suppression, instrumentation, computers, telecommunications, and automotive electronics.

Z5U: Dielectrics have the highest capacitance for their size. Z5U type capacitors have applications in bypass, decoupling, transient suppression, computers, and telecommunications.


Common Capacitor Working Voltages (DC),
By Capacitor Type.


Ceramic Electrolytic Tantalum Mylar (Polyester) Mylar (Metal Film)
  10V 10V    
16V 16V 16V    
25V 25V 25V    
  35V 35V    
50V 50V 50V 50V  
100V 100V   100V  
  250V     250V
      400V 400V

Bottom of Form








Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: